
Deep Dive into
SMART on FHIR®

Tani Frankel

Sales Engineer Manager

Launch Contexts: Patient-Level, Encounter-Level, System-Level

SMART App Authorization: Deep Dive into Tokens

Detailed Workflow Examples: Querying FHIR Resources

Understanding OAuth2 Scopes in SMART on FHIR1

2

3

4

The Lupa Equivalent

The Lupa Equivalent

App Registration
& Consent

Authorization
ID & Access

Token

Application Launch

Request FHIR Bundle
+ Token

Respond
FHIR Bundle

SMART on FHIR App User
InterSystems
FHIR Server

Token
Validation

OAuth0

Web Gateway

ISC OAuth Client

Web Server

Register

Register

Request FHIR Bundle
+ Token

1

2

3

4

5

67

8

9

10 11

0

0

SMART App Sample Flow

Hands-on Exercise

Application OAuth Server FHIR Server

Understanding OAuth2 Scopes in SMART on FHIR

• Key Concepts

• Oauth2 for authorization

• Scopes define the level of access granted to the SMART app

• Examples of common scopes:

• patient/*.read, user/*.write, launch, openid,

• Types of Scopes

• User-Level: Authenticated user-based (e.g. user/*.read)

• Patient-Level: Patient-specific data (e.g. patient/*.read)

• System-Level: System access for server-to-server communication (e.g. system/*.read)

Common SMART on FHIR Scopes

ExplanationScope

Enables OpenID Connect (OIDC) for identifying usersopenid

App launched in context of a patient and need the Patient Resourcelaunch/patient

App launched in context of an encounter and need the Encounter
Resource

Launch/encounter

Enables long-lived access even when users are no longer onlineOffline_access

Client
Overview
(App)

Client Types

Confidential
Clients

Can include
secrets in the

app, likely does
not need consent

Public Clients
Cannot include a

secrets in the app,
probably require

consent

Elements of Application Registration

1. Takes place on the Authorization Server
2. A unique client ID is created

3. Usually will get a client secret (the app's password).
Note: should only be used in backend applications

4. Application Name – possibly shown to users
5. Application redirect – extremely important, means that

attackers can not steal credentials and direct to their
website

6. Application Type – affects token lifetimes

Tokens
Overview

Tokens are Fundamental in OAuth

• ID

What Can You Get in an ID Token?

1.OpenId

2.Profile

3.Email

4.Address

5.Phone

1. Header: Data about the token's type and the
algorithm used to make it are included here.

2. Payload: Information about the user, including
permissions and expirations, is included here.

3. Signature: Verification data, so the recipient can
ensure the authenticity of the token, is included
here. This signature is typically hashed, so it's
difficult to hack and replicate.

• Access

https://auth0.com/blog/id-token-access-token-what-is-the-difference/

Access Token vs ID Token

Access Token

• Not read by the application

• Used by the application to get access to a given API

• “aud” - is the api or resource server

{

"iss": "https://dev-

1h5yru1mv5rucu2k.us.auth0.com/",

"sub": "auth0|63dbb2bb9911bfb5e7935d9a",

"aud": "https://fhir.intersystems.internal.",

"iat": 1675365807,

"exp": 1675452207,

"azp": "Mvfyl9FrJVahOl4r46Yf12FFP2zu010Z"

}

ID Token

• Unpacked by the application

• Provides information about the user

• “aud” – is the id of the application

{

"iss": "https://dev-

1h5yru1mv5rucu2k.us.auth0.com/",

"sub": "auth0|63dbb2bb9911bfb5e7935d9a",

"aud": 45672345,

"iat": 1675365807,

"exp": 1675452207,

"azp": "Mvfyl9FrJVahOl4r46Yf12FFP2zu010Z"

}

https://dev-1h5yru1mv5rucu2k.us.auth0.com/%22
https://dev-1h5yru1mv5rucu2k.us.auth0.com/%22
https://dev-1h5yru1mv5rucu2k.us.auth0.com/%22
https://dev-1h5yru1mv5rucu2k.us.auth0.com/%22

JSON JWT Token Structure

Local Token Introspection

Local introspection means the token is unpacked and
validated locally, without a request to a remote server.

The Token Introspection extension defines a mechanism for
resource servers to obtain information about access tokens.

With this spec, Resource Servers can check the validity of
access tokens, and find out other information such as which
user and which scopes are associated with the token.

Token Lifetimes

1.If you want to increase the security of your APIs, use access token
lifetimes that are extremely short (< 10 minutes)

2.Limits the risks of leaked tokens
3.Refresh token lessen the hit in user experience from short tokens

Authorization
Server
Overview

Authorization Server

• Protect the API from unauthorized

access

• Logon occurs through re-direction at

the authorization server endpoint

• Tokens are given to applications (token

factory)

Authorization Flow + PKCE - Workflow Review

Client Login

Generate Code Verifier
+ Code Challenge

Authorization Code Request + Code Challenge to
/authorize

Redirect to login/authorization prompt

Authenticate and Consent

Authorization Code

Authorization Code + Code Verifier to
oauth/token

Validate Code
Verifier
+ Code Challenge

ID Token and Access Token

Request user data with Access Token

Response

Request user data with Access Token
Cloud FHIR Server

Cloud

Scopes
Overview

Scopes Characteristics

1.Not well defined in the OAuth.
2.Limit abilities of application.
3.Applications will “request” access.
4.OAuth does not define permissions for different groups.
5.Limit what an access token can do within the context of
what a user can do.

6.Just strings, only used by the API.
7.Could use : to separate string.
8.Read, Write access very common.
9.Consent is typically added for third-party APIs.

SMART v1 scopes

Patient-specific scopes allow access to specific data about a single patient.
(You’ll notice that we don’t need to say which patient here: clinical data
scopes are all about “what” and not “who.”).
Patient-specific scopes take the form: patient/resourceType.(read|write|*).

('patient' | 'user') '/' (fhir-resource | '*') '.' ('read' | 'write' | '*')

SMART v2 scopes

('patient' | 'user' | 'system') '/' (fhir-resource | '*') '.' ('create' | 'read' | 'update' | 'delete' |
'search') '.' (param= ‘value'| &)

Goal Scope Notes

Read and search for all observations about a patient patient/Observation.rs

Read demographics about a patient patient/Patient.r
Note the difference in capitalization between “patient” the permission type and “Patient”

the resource.

Add new blood pressure readings for a patient patient/Observation.c

Note that the permission is broader than the goal: with this scope, an app can add not

only blood pressures, but other observations as well. Note also that write access does

not imply read access.

Read all available data about a patient patient/*.cruds See notes on wildcard scopes below.

Examples

http://observation.rs/

Access scopes using SMART v2

•scope=user/Observation.r?category=laboratory
•User is allowed to read Observation resources with a category element

containing the code “laboratory”

•scope=user/Observation.rs?encounter.id=Encounter/456
•User is allowed to see all Observation resources linked to the Encounter with id

“456”.

Q & A

Thank you

	Slide 1: Deep Dive into SMART on FHIR®
	Slide 2
	Slide 3
	Slide 4: The Lupa Equivalent
	Slide 5: The Lupa Equivalent
	Slide 6: SMART App Sample Flow
	Slide 7: Hands-on Exercise
	Slide 8: Understanding OAuth2 Scopes in SMART on FHIR
	Slide 9: Common SMART on FHIR Scopes
	Slide 10: Client Overview (App)
	Slide 11: Client Types
	Slide 12: Elements of Application Registration
	Slide 13: Tokens Overview
	Slide 14: Tokens are Fundamental in OAuth
	Slide 15: Access Token vs ID Token
	Slide 16: JSON JWT Token Structure
	Slide 17: Local Token Introspection
	Slide 18: Token Lifetimes
	Slide 19: Authorization Server Overview
	Slide 20: Authorization Server
	Slide 21: Authorization Flow + PKCE - Workflow Review
	Slide 22: Scopes Overview
	Slide 23: Scopes Characteristics
	Slide 24: SMART v1 scopes
	Slide 25: SMART v2 scopes
	Slide 26: Access scopes using SMART v2
	Slide 27: Q & A
	Slide 28: Thank you

